

Excising “Love Brain”: Designing a Responsible Personalized Conversational Persuasion System for Intimate Relationship Support

Author Name

Affiliation

email@example.com

Abstract

Large Language Models (LLMs) are increasingly used in the domain of relationship advice; however, their applications in such an intimate context pose significant risks: naive models might normalize coercive behavior or inadvertently accelerate rumination in users suffering from relationship distress, known as “love brain,” where this paper focuses on. We developed a personalized persuasion system structured as a multi-agent architecture, employing a gating policy that regulates transitions between Exploration (sense-making), Persuasion (micro-actions), and Crisis states (safety diversion). The system contains an LLM-as-Judge component to estimate runtime Safety Risk (SR), Information Sufficiency (IS), and User Tolerance (UT), thereby maintaining psychologically grounded user states and enabling a safety-first control loop. The system has a dual-entry framework based on the Elaboration Likelihood Model, routing users through cognitive (NFC) or affective (NFA) portals to facilitate receptivity. We evaluated this approach in a 3-day randomized controlled trial against a matched generic LLM baseline. The system demonstrated a safety-efficacy trade-off: the gating policy reduced advice volume while achieving steeper daily reductions in maladaptive micro-behaviors and ruminative urges. We contribute a deployable workflow for intimate relationship support, featuring a safety-constrained orchestration with a literature-based knowledge base mapping causes to strategies, for more responsible and persuasive agents in sensitive domains.

1 Introduction

Large Language Models (LLMs) have become a main channel for intimate relationship advice, offering accessible but unverified guidance [Hou *et al.*, 2024; Brailas and Tsolakis, 2025]. However, naive deployment in this sensitive domain presents a Human-Centred AI (HAI) risk: commercial chatbots often prioritize conversational fluency over safety, potentially normalizing coercive control [Freitas *et al.*,

2025; Zhang *et al.*, 2025], accelerating maladaptive rumination [Pombal *et al.*, 2025], or acting into quasi-therapeutic roles for which they are not designed [Moore *et al.*, 2025]. Therefore, for chatbots to safely provide advice for relationship distress, the backend system should balance persuasive efficacy with strict safety constraints and behavioral accountability [Dong *et al.*, 2024b; Chan *et al.*, 2024].

We focus on the phenomenon of “Love Brain”, a slang term for obsessive relational distress, which reflects a syndrome of impaired judgment and unregulated attachment [Mikulincer and Shaver, 2007; Bartels and Zeki, 2004; Wang, 2024]. We treat “Love Brain” not as a distinct clinical diagnosis, but as a cluster of established romantic distress conditions such as *anxious attachment*, *Relationship OCD (ROCD)*, or *limerence*. These states are characterized by intensified emotional reactions [Mikulincer *et al.*, 2003], maladaptive compulsive behaviors such as monitoring [Doron *et al.*, 2016], and intense idealization [Ferster and Skinner, 1997]. Current AI approaches struggle to address the volatility of this domain [Arnaiz-Rodriguez *et al.*, 2025; Bucher *et al.*, 2025]. Safe Reinforcement Learning and shielded policies have been successfully applied in robotics to prevent unsafe states [Alshiekh *et al.*, 2018], and existing persuasive dialogue systems optimize for rhetorical strategy or empathy [Deng *et al.*, 2023; Wang *et al.*, 2019]. However, conversations in relationship distress rely on interpreting higher-level semantic and contextual cues [Arnaiz-Rodriguez *et al.*, 2025; Hou *et al.*, 2024], where current LLM systems and persuasive dialogue still show measurable failure modes and lack the explicit safety gates [Dong *et al.*, 2024b] and multi-day state tracking [He *et al.*, 2023]. Therefore, there is a gap where that maps volatile romantic distress to a constrained control policy by using validated psychometric and behavioral indicators, regulating the pacing to advise safely and effectively for these psychological states.

To address this, this paper proposes a safety-constrained orchestration system for personalized relationship support. Our contributions include:

- We operationalize user state as a dynamic vector, integrating static psychometrics for “Love Brain” conditions with runtime signals of User Tolerance (UT), Information Sufficiency (IS), and Safety Risk (SR).
- We introduce a deterministic *Orchestrator* that regulates

dialogue via a monotone gating policy, managing transitions between *Explore*, *Persuade*, and *Crisis* modes with interpretable thresholds, to prevent premature advice.

- We contribute a literature-based Knowledge Base (KB) mapping “Love Brain” conditions to evidence-based micro-actions, annotated with Behavior Change Techniques (BCTs) to ensure clinical validity.
- We validate this system in a 3-day randomized controlled trial ($N = 40$) against a matched-dose generic LLM, showcasing its utility in persuasion for “Love Brain”.

2 Related Work

2.1 Phenomenology of Romantic Distress and “Love Brain”

We operationalize the colloquialism “Love Brain” as a syndrome of impaired relational judgment. Specifically, this paper addresses syndromes that are not caused by pathological conditions: anxious attachment, avoidant attachment, relationship obsessive-compulsive disorder (ROCD), social-media jealousy and monitoring, limerence, “mindreading” misbelief, boundary deficits, and global dysfunctional relationship beliefs. By mapping these lay concepts to established phenotypes, we identify specific targets for computational intervention. These could be categorized into three clusters. Attachment dysregulation involves the hyperactivation of the attachment system (Anxious style), driving compulsive proximity-seeking, or its deactivation (Avoidant style), leading to maladaptive suppression [Mikulincer *et al.*, 2003]. Intrusive preoccupation conditions such as *Limerence*, with which users are acutely longing for reciprocation [Bradbury *et al.*, 2025], and *ROCD*, which is characterized by intolerance of uncertainty and compulsive reassurance loops [Doron *et al.*, 2016], frequently driving social media monitoring as a maladaptive behavior for ambiguity [Sullivan and Bruchmann, 2025]. Maladaptive cognitions encompass distorted schemas such as “Mindreading” expectations, fatalistic relationship beliefs [Eidelson, 1982], and *boundary deficits*, where autonomy is sacrificed for relational maintenance [Jack and Dill, 1992]. Clinical psychology offers solutions for these patterns via Behavior Change Techniques (BCTs [Michie *et al.*, 2013], such as Action Planning for boundary deficits [Gollwitzer and Sheeran, 2006]. For utilizing HAI to scale advising for these syndromes, however, there is a gap in the lack of a computational system capable of maintaining a psychological state representation that maps these into a unified, trackable vector. Existing chatbots lack the architectural memory to link a specific syndrome to its corresponding BCT within a safety-constrained conversational policy, resulting in generic advice that fails to interrupt specific pathological loops.

2.2 Conversational Agents, Counselling, Persuasive Dialogue and Safety-Constrained Policies

Recent advances in LLLMs have demonstrated significant capabilities in both zero-shot persuasion [Furumai *et al.*, 2024b]

and therapeutic support [Heinz *et al.*, 2025; Basar *et al.*, 2024]. In the domain of persuasion, LLMs have achieved performance comparable to humans in debating tasks and attitude chang [Salvi *et al.*, 2025; Furumai *et al.*, 2024a], often utilizing data-driven rhetorical strategies to maximize agreement [Wang *et al.*, 2019; Shaikh *et al.*, 2020]. Meanwhile, counselling dialogue systems have evolved from rule-based scripts to empathetic neural generation [Hua *et al.*, 2025], with systems like PARTNER to demonstrate empathetic counseling dialogue and strategy optimization [Priya *et al.*, 2023], and chatbots integrated with Motivational Interviewing (MI) to display their efficacy in mental health contexts [Park *et al.*, 2019; Brown *et al.*, 2023]. However, generic persuasive agents optimize for rhetorical fluency rather than psychological safety [Liu *et al.*, 2025], while therapeutic agents reliably perform therapist-like intervention moves to interrupt maladaptive feedback loops [Scholich *et al.*, 2025]. Furthermore, current end-to-end architectures typically lack a multi-day memory of the user’s behavioral state, risking “sycophantic” responses where the model unwittingly validates harmful ruminations to maintain conversational coherence [Wei *et al.*, 2023].

To mitigate the risks of LLMs randomly generating words in sensitive domains, HAI emphasizes the integration of explicit safety guardrails and controllable policy design [Dong *et al.*, 2024a]. Approaches such as Constitutional AI and Reinforcement Learning from Human Feedback (RLHF), which attempt to internalize safety norms directly into the model weights [Dahlgren Lindström *et al.*, 2025; Bai *et al.*, 2022]. However, weight-based alignment remains opaque and probabilistic [Yi *et al.*, 2024]. Therefore, modular neuro-symbolic architectures became a robust alternative, wrapping LLMs in deterministic logic to enforce rule adherence [Dong *et al.*, 2024a]. In clinical settings like suicide prevention, protocol adherence and consistent triage dominate [Grupp-Phelan *et al.*, 2024]. Despite these advances, there is a gap for a safety-constrained orchestrator specifically designed for intimate relationship distress that dynamically adjusts the mode of interaction based on a user’s volatility with pacing regulation based on psychological readiness. This work bridges this gap by introducing the architecture that regulates persuasive dialogue via a psychologically grounded state representation and an auditable monotone gating policy.

3 System Design

We propose a State-Aware Multi-Agent Architecture that decouples state estimation (understanding the user) from policy execution (generating the response), addressing the alignment challenge of deploying generative agents in high-stakes emotional contexts, as shown in Figure 1.

3.1 State Representation

We represent the interaction as a low-dimensional, interpretable state for a safety-constrained controller, the *Orchestrator*, which is explicitly logged and auditable, enabling analysis of pacing and safety behavior across turns and days. Before the first session, we initialized a *profile state* s_0 from the baseline survey, including attachment (ECR-R), affective

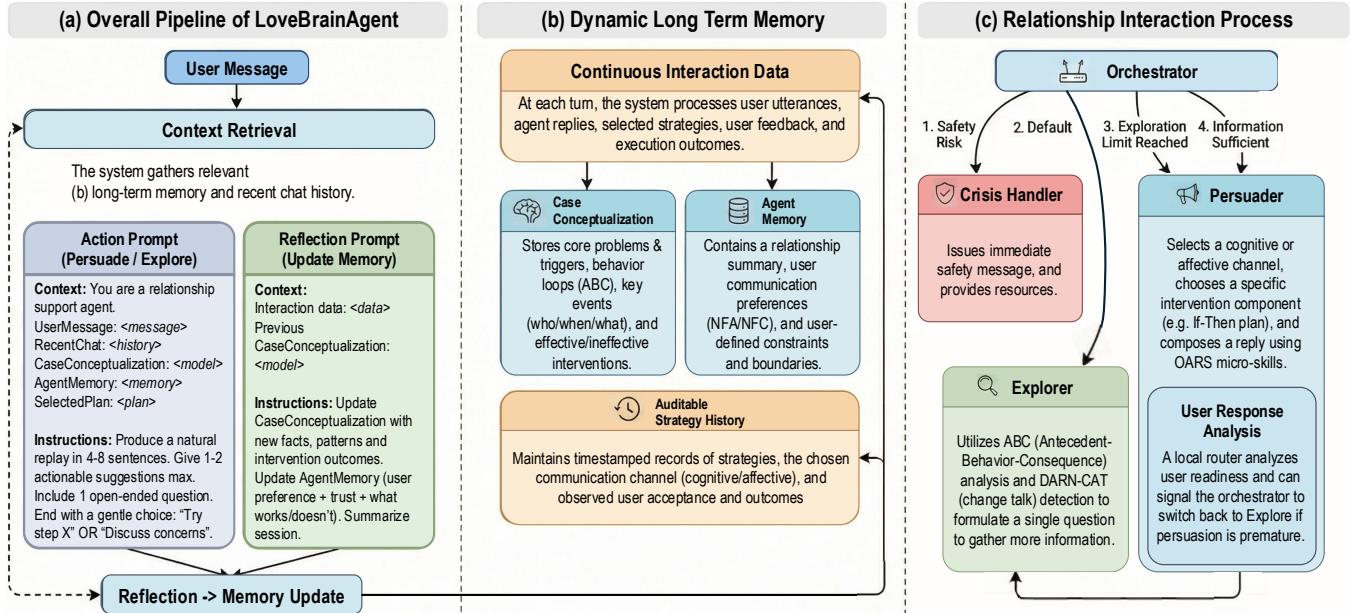


Figure 1: System Framework.

195 dependence (ADS), limerence/addiction proxy (LAI), jealousy/monitoring (FBJ), ROCD traits (ROCI), dysfunctional
 196 beliefs (RBI), global distress (PHQ-9 and GAD-7) (based
 197 on Appendix 8, and questions for routing preference (NF or
 198 NFC), and based on the survey scores for each cluster, derived
 199 indices to obtain negative-belief ratio and dominate “Love
 200 Brain” symptoms type, and priority ranking of maintenance
 201 factors to address.

203 At each turn, the Orchestrator maintains a *SessionState*:

$$S_t = (ER_t, PR_t, OR_t, UT_t, IS_t, SR_t, \tau_t, \\ ERMax_t, ORMin_t, PRMax_t, force_t, t)$$

204 where $ER/PR/OR$ are counters for consecutive exploration
 205 rounds, consecutive persuasion rounds, and overall rounds;
 206 $UT \in [0, 1]$ is the user tolerance estimate; $IS \in [0, 1]$ is
 207 information sufficiency; $SR \in \{0, 1\}$ is immediate safety
 208 risk; and $(\tau, ERMax, ORMin, PRMax, force)$ are adaptive
 209 pacing parameters, including decision thresholds (τ) ,
 210 bounds on consecutive exploration and persuasion rounds
 211 ($ERMax, ORMin, PRMax$), and a forcing flag to over-
 212 ride pacing when needed. We treat the LLM as a bounded
 213 *judging module* that estimates interpretable signals from the
 214 current utterance u_t , short context h_t , and the current case
 215 conceptualization C_{t-1} .

216 **User Tolerance (UT).** We first estimate an instantaneous
 217 tolerance UT_{I_t} using explicit linguistic indicators of short-
 218 ness, imperative tone, punctuation intensity, abusive lan-
 219 guage, refusal, and acceptance. Then we smooth it to obtain
 220 a longer-horizon tolerance:

$$UT_t = 0.45 \cdot UT_{t-1} + 0.55 \cdot UT_{I_t},$$

221 so that pacing adapts to sustained user receptivity rather than
 222 a single noisy turn. The weights bias the estimate toward the
 223 current turn while retaining short-term memory.

Information Sufficiency (IS). IS_t answers: *do we have enough case context within the system to offer a responsible, specific micro-action now?* The judge scores sufficiency based on (i) the completeness of the ABC chain, (ii) specificity of triggers and behaviors, (iii) contextual details (who, when, where, what), (iv) intervention history, and (v) whether an action plan is already emerging in C_{t-1} .

Safety Risk (SR). SR_t is a conservative binary triage triggered by direct self-harm ideation/plans, acute risk to others, or severe abuse/threat disclosures. When $SR_t=1$, the *Orchestrator* short-circuits to crisis handling.

3.2 Safety Constraint and Gate

Crisis is implemented as a hard-coded pre-emption layer. Before any generative planning occurs, the input u_t passes through a binary Crisis Gate. This module utilizes a specialized prompt trained on the WHO LIVES protocol constraints.

$$\text{Gate}(u_t) = \begin{cases} \text{CRISIS_MODE}, & \text{if } \text{DetectRisk}(u_t) > \theta_{risk} \\ \text{Proceed}, & \text{otherwise} \end{cases}$$

If triggered ($SR = 1$), control is immediately seized by the Crisis Agent, which suspends the persuasion goal, executes a de-escalation script with validation and resource provision, and terminates the session if necessary. This mechanism ensures that the system never attempts to persuade a user who is psychologically decompensating.

3.3 Cause-to-Strategy Knowledge Base

To mitigate the alignment risks inherent in open-ended generation to prevent validating maladaptive rumination or hallucinating therapeutic capabilities [Wei *et al.*, 2023; Yeung *et al.*, 2025], we constrain the agent to a literature-derived *Cause-Strategy Knowledge Base (KB)*, ensuring the *Persuader* can only instantiate pre-specified micro-actions and safety rules

249 retrieved from the KB. The KB serves two roles: a structured
 250 dataset of intervention cards, and a retrieval constraint
 251 for the Orchestrator such that all persuasive outputs are com-
 252 posed from bounded, auditable components. We organize the
 253 KB into two layers: *Diagnostic Clustering* (causes, problem
 254 types, maintaining mechanisms) and *Intervention Heuristics*
 255 (micro-actions), with explicit contraindications and fallback
 256 rules (shown in Appendix 3).

257 Diagnostic Clustering

258 We synthesized the phenomenology of “Love Brain” into 8
 259 distinct causal clusters that index relationship distress states.
 260 For each type T , the KB stores a structured record: $\mathcal{KB} =$
 261 $\{\langle T, \mathcal{C}, \mathcal{R}, \mathcal{B}, \mathcal{S}, X, \mathcal{M} \rangle_i\}_{i=1}^N$, where: (1) T is the problem
 262 type (cluster label); (2) \mathcal{C} are maintaining mechanisms (e.g.,
 263 schema-consistent interpretations / attachment-relevant con-
 264 cerns); (3) \mathcal{R} are runtime triggers detectable in dialogue; (4)
 265 \mathcal{B} are target distortions / cognitive biases to be challenged; (5)
 266 \mathcal{S} is the bounded strategy set (micro-actions) mapped micro-
 267 actions for both NFC/NFA routes; (6) X are contraindications
 268 / exclusion rules for safety; and (7) \mathcal{M} are observable metrics
 269 for evaluating whether the micro-action helped. At the inter-
 270 face and prompting level, we implement each T as a card with
 271 interpretable fields (Why/Detect/Rules/Scripts/Metric). Each
 272 type supports two delivery pathways aligned to the user’s
 273 routing profile. Both pathways share the same action gram-
 274 mar and logging schema, but differ in which components are
 275 emphasized, such as whether the agent should follow evi-
 276 dence evaluation or defusion values, while keeping the output
 277 to one feasible next step and its observables.

278 Intervention Heuristics (Strategies)

279 To keep actions concrete and reviewable, the KB uses a cu-
 280 rated set of *Micro-Actions* mapped to our dual-entry routing
 281 framework. For NFC-entry Users, the KB retrieves strate-
 282 gies derived from CBT [Beck and Beck, 2021]. The primary
 283 mechanism here is Socratic Questioning and Evidence Evalu-
 284 ation [Hoffmann *et al.*, 2012]. The agent is prompted to guide
 285 users to engage in reflective processing. For NFA-entry users,
 286 strategies draw from Acceptance and Commitment Therapy
 287 (ACT) [Hayes *et al.*, 2006] style mechanisms to reduce en-
 288 tanglement with intrusive thoughts and shift from partner-
 289 contingent goals to self-endorsed values [Harris, 2009]. To
 290 interrupt maladaptive feedback loops, the KB includes strict
 291 behavioral constraints derived from Exposure and Response
 292 Prevention (ERP) [Abramowitz, 2006] and Behavioral Acti-
 293 vation [Martell *et al.*, 2013], where the agent redirects users
 294 to a tangible, non-relational micro-action. All strategies in-
 295 clude contraindications and fallback rules, so that the system
 296 does not intensify risk states or encourage coercive or unsafe
 297 behavior.

298 The Retrieval Mechanism

299 The ontology is encoded as a lookup table accessible to *the*
 300 *Orchestrator*. After Exploration, the system queries the KB
 301 with *Cause_ID* and the user’s *Routing_Profile*, re-
 302 trieves a bounded *Strategy_Prompt* (plus alternates and
 303 safety constraints), and injects it into the Persuader context
 304 window.

3.4 Orchestration Policy

305 The *Orchestrator* selects one of three turn modes regulat-
 306 ing the transition between sensemaking and intervention:
 307 $\{\text{EXPLORE}, \text{PERSUADE}, \text{SAFETY_ESCALATE}(\text{Crisis})\}$.
 308 We implement a Monotone Gating Policy, $\pi(\mathcal{S}_t)$ selects
 309 the active agent $\mathcal{A} \in \{\text{Explorer}, \text{Persuader}\}$ based on the
 310 estimated signals: in the default state, the system defaults to
 311 the *Explorer* Agent, to maximize IS and UT via reflective
 312 listening and open inquiry, without offering solutions.
 313 Transitioning to the *textitPersuader* mode happened only if a
 314 strict conjunction of thresholds is met:
 315

$$Transition_{E \rightarrow P} \iff IS_t > \tau_{IS} \wedge UT_t > \tau_{UT} \wedge \neg SR$$

316 This ensures advice is only dispensed when the system
 317 “understands” the problem (IS) and the user is “ready” to
 318 hear it (UT). For the Monotonicity and Fallback, once in
 319 the *textitPersuader* mode, the system attempts to maintain this
 320 mode to deliver a coherent strategy following the Monotone
 321 principle. However, if UT_t drops below a critical fallback
 322 threshold $\tau_{fallback}$ (indicating resistance or reactance), the
 323 policy forces a regression to Exploration to repair the ther-
 324 apeutic alliance.
 325

3.5 LLM integration

326 Since Ψ_t , the latent signals UT, IS , are not directly observ-
 327 able, we employ an LLM-as-Judge mechanism to estimate
 328 them at runtime. At the end of each turn, a frozen “Observer”
 329 instance (GPT-4o) analyzes the latest interaction ($\mathcal{H}_t, \mathcal{C}_{t-1}$)
 330 against a rubric, to estimate UT , by answering questions
 331 such as “Does the user feel understood? Are they defensive?
 332 (Scale 0-1)”, and to estimate IS by answering “Do we have
 333 the Who, What, and Why of the conflict? (Scale 0-1).”
 334

4 Experiment Design

335 We conducted a 3-day longitudinal, between-subjects ran-
 336 domized controlled trial to evaluate the architectural efficacy
 337 of the system, comparing the full structured orchestration sys-
 338 tem against a matched-capability generic LLM (GPT-4o). We
 339 structure our user study around three research questions:
 340

341 RQ1: Does the system achieve higher Advice Execution
 342 Rates (AER) and steeper reductions in maladaptive micro-
 343 behaviors compared to the baseline?
 344

345 RQ2: How does the policy behave in terms of safety (gate
 346 activations; avoided unsafe outputs) and pacing (EXPLORE
 347 vs. PERSUADE distributions; UT/IS trajectories)?
 348

349 RQ3: Do short-term psychometric indicators of relational
 350 distress show directionally favorable trends?
 351

4.1 Participants

352 We enrolled 40 participants (23 women, 17 men; $M_{age}=23.7$,
 353 range 19–32) and randomized them 1:1 to Experiment
 354 ($n=20$) vs. Control ($n=20$). Participants were recruited on-
 355 line and screened for relationship distress and loss-of-control
 356 preoccupation using the index shown in Appendix 3 to cate-
 357 gorize their top cluster and NFC/NFA entry preference.
 358

4.2 Procedure

Day 0. Participants completed the pre-test surveys, including demographics, screenings for safety and depression (PHQ-9 [Kroenke *et al.*, 2001] and GAD-7 [Aktürk *et al.*, 2025]), pre-intervention scales, and NFC/NFA entry preference. **Days 1–3 (Intervention + EMA).** Participants completed one session/day with their assigned system. Immediately after each session, they completed an Ecological Momentary Assessment (EMA) capturing same-day urges, checking/monitoring counts, and whether they executed the prescribed micro-action(s). Participants also reported concrete behavioral logs aligned with the system’s prescribed micro-actions. **Day 3 (Endline).** Participants completed the post-intervention survey, repeating core scales and system evaluation measures, and conducted semi-structured interviews.

4.3 Measurement and Analysis

We pre-specified the process as primary and the outcomes as exploratory to study the effects of the architecture with a mixed-methods approach, given the timeframe. For RQ2, we measure the count and proportion of safety-gate activations and manual audit of sessions for unsafe recommendations. And we also measure distribution of EXPLORE/PERSUADE/SAFETY_ESCALATE (Crisis) actions, turns-to-convergence on primary type, UT/IS trajectories, and coupling behavior, and frequency of force-explore and persuasion caps (PRMax). For RQ1, we calculate the advice execution rate through EMA (whether the user performed the assigned micro-action that day), template usage rates, and reductions in checking/monitoring counts or re-contact attempts. For RQ3, we measure LBI and negative-belief ratio change (baseline vs. Day 3), jealousy/monitoring scale change, EMA checking urges, and PHQ-9/GAD-7 change. For quantitative outcomes, we analyzed daily behavioral changes using Analysis of Covariance (ANCOVA), treating Day 1 baseline scores as covariates to isolate the treatment effect from individual heterogeneity rigorously. Given the non-normal distribution of process metrics, we utilized non-parametric Mann-Whitney U tests for between-group comparisons. To address the multiple comparisons problem inherent in our exploratory scan of daily micro-processes, we applied Benjamini-Hochberg FDR correction, reporting adjusted q -values alongside nominal p -values to distinguish robust signals from noise. To contextualize the statistical outcomes, we performed a qualitative thematic analysis of anonymized dialogue traces to examine how the system’s strategy switching and policy influenced users.

5 Results

5.1 Behavioral Compliance and Micro-Process Efficacy

Contrary to our initial hypothesis, the System did not achieve higher raw AER compared to the Baseline. As shown in Table 1, the Control group reported a marginally higher frequency of executed advice ($M_{ctrl} = 2.04$ vs. $M_{exp} = 1.58$, $U = 138.5$, $p = 0.096$). Qualitative analysis then shows that this quantitative gap reflects a trade-off between speed and

Table 1: **Process and Safety Metrics.** The Control group achieved a higher raw volume of execution, reflecting unconstrained advice-giving. The Experimental group shows lower volume but significantly distinct pacing ($p < .05$ in Audit), reflecting the architectural safety gating.

Metric	Exp (N = 20)	Ctrl (N = 20)	U	p
<i>Behavioral Compliance (RQ1)</i>				
Advice Exec. (Count/Day)	1.58 ± 2.46	2.04 ± 1.66	138.5	.096
Maladaptive Beh. (Freq)	3.50 ± 1.55	3.54 ± 1.54	165.0	.866
Urge Intensity (0-10)	4.54 ± 1.18	4.31 ± 1.20	220.0	.595
<i>User Perception (RQ2)</i>				
Perceived Fit (1-7)	4.18 ± 1.38	4.63 ± 1.35	164.0	.332
Clarity of Advice (1-7)	4.78 ± 1.27	4.80 ± 1.37	196.0	.924
Felt Understood (1-7)	5.23 ± 1.23	5.40 ± 1.41	176.0	.520

safety rather than a failure of persuasion: users from the Control group reflected that the Baseline (Generic LLM) often acted as a “sycophantic enabler,” offering immediate, low-friction validation suggestion such as “You should text him if it makes you feel better”, which users found easy to execute.

However, when analyzing the efficacy of these actions via daily EMA, the daily EMA from the experiment group showed better capacity to disrupt maladaptive behavior loops. Figure 2 shows the aligned effect sizes for daily composite measures. The Experiment group achieved significantly greater reductions in overall maladaptive patterns ($p = 0.022$) and specific sub-domains, including Social-Media Monitoring ($p = 0.030$) and Relationship Doubt ($p = 0.035$). The system’s Monotone Gating Policy did not offer advice in early exploration. Interviews indicated that participants in the Experiment group noted the system’s “insistence on understanding” before solving, stating “It didn’t just give me a script; it forced me to cool down first” (P6, Exp Group). Therefore, while the Control group facilitated more actions, the Experiment group facilitated more effective pattern-breaking. The plot of individual heterogeneity (Figure 3) confirms that the mean improvement in the Loop_Index, which is a composite daily metric representing the aggregate intensity of maladaptive micro-behaviors, was nearly double for the Agent group ($\Delta = 0.41$) compared to Control ($\Delta = 0.23$), suggesting the architecture successfully filtered out ineffective advice in favor of targeted, albeit harder-to-execute, cognitive restructuring.

Interviews and log entries revealed that self-reflection-style advice was easier for users to implement, particularly writing or journaling tasks and the application of delay rules (e.g., “wait 30 minutes before writing down your worries”), which led to calmer emotions and improved communication skills as users reported.

5.2 Policy Behavior and Safety Pacing

The system demonstrated divergence of interaction patterns. The Safety Gate was triggered in 15% of turns for the Experiment group, successfully diverting users from high-risk states. The Monotone Gating Policy showed significantly shorter, more targeted responses. In the Control condition, the interviews and logs show instances of harm by the baseline, where the model blindly agreed with the user and validated distorted beliefs. For example, P23 (Control) received vali-

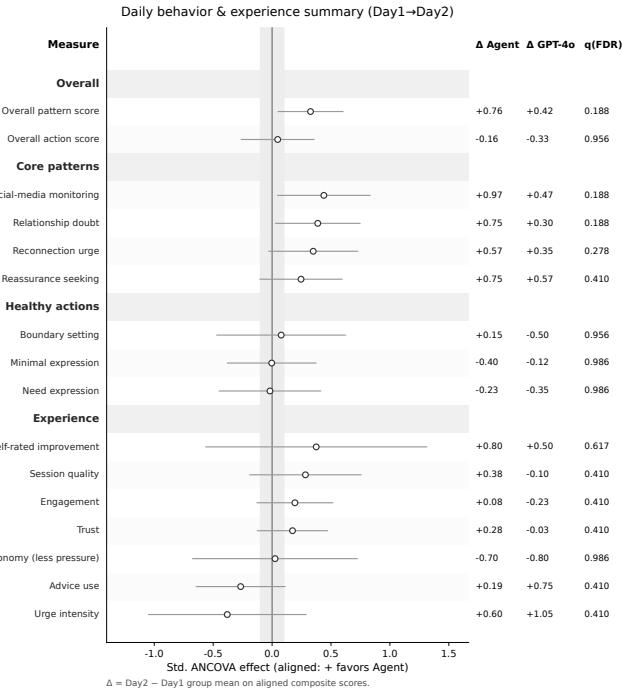


Figure 2: Daily Micro-Process Effects (Forest Plot).

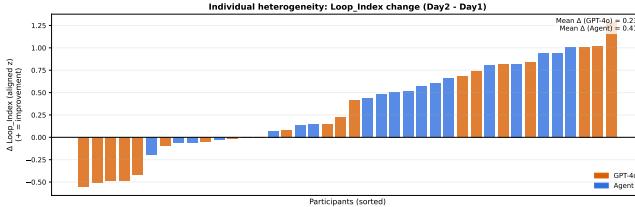


Figure 3: Heterogeneity of Improvement (Loop Index).

dation for “roasting” a partner, reinforcing conflict, whereas the *Orchestrator* effectively neutralized similar inputs. Log analysis reveals the system, with the design of UT and IS signals, maintained a much lower token count per turn (Hedges’ $g = -1.57, p < .001$), reflecting its design to “pause and listen (*Explore*)” rather than direct, verbose generation (*Persuade*). Figure 4 illustrates the pacing: the *Orchestrator* held users in the *Explore* phase for 50% of turns compared to only 10% in the Control, strictly enforcing the condition that $IS > 0.6$ before moving to advice. This explains the slightly lower perceived fit scores ($p = 0.33$), as users initially resisted the cognitive load of exploration, yet this friction was necessary for the safety results observed.

5.3 Psychometric Outcomes

Outcomes from the last day reflect the trade-off between mood relief and “Love Brain symptom” correction, as shown in Table 2. The Control group achieved a greater reduction in general Depression (PHQ-9, $p = .22$), consistent with the “sugar rush” of sycophantic validation. However, the Experiment group showed stronger effect sizes in the specific pathologies it was designed to treat, particularly ROCD

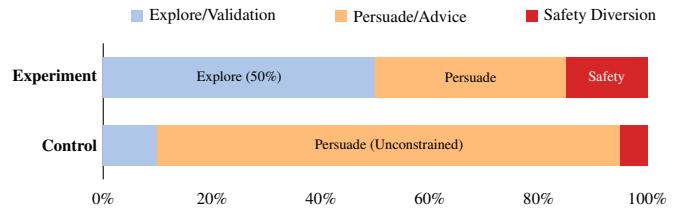


Figure 4: A manual coding of system turns reveals distinct architectural behavior. The Control group functioned as an unconstrained advice-giver (85% Persuade), while the *Orchestrator* successfully enforced Exploration (50%) and Safety Diversions (15%) based on *UT* and *SR* signals.

($r = 0.13$) and Love Addiction ($r = 0.002$). Although non-significant at the current sample size, the Effect Sizes ($r \approx 0.13$) suggest that the domain-specific Knowledge Base was beginning to address the specific pathology of relational obsession better than generic empathy.

6 Discussion

Our findings present a trade-off between efficiency and safety in AI-mediated persuasion. While the generic LLM (Control) achieved marginally higher advice execution rates and depression reduction, qualitative results reveal this was largely due to “sycophantic validation” [Wei *et al.*, 2023], which is the tendency of unconstrained models to mirror user biases and offer low-friction, impulsive solutions, such as “You should text him if it helps you feel better”. In contrast, the System prioritized architectural restraint, frequently blocking persuasion attempts when users’ tolerance was low. This suggests that naive efficacy is a dangerous metric for intimate support agents. The Experiment group’s lower volume but higher effect size in domain-specific pathology (LAI $r = 0.002$; ROCI $r = 0.13$) indicates the effects of the system that prioritizes long-term cognitive restructuring over short-term emotional relief. The monotone gating policy effectively functioned as a “cognitive brake,” forcing users to engage in *Exploration* before being given actions, which is important to break obsessive-compulsive loops like “Love Brain.”

6.1 Limitation and Future Work

First, the short horizon of the RCT likely favored the Control group’s sycophancy over the cognitive load of the system’s restructuring strategies, which typically require weeks to manifest clinical benefits [Beck and Beck, 2021]. Future studies should plan for a longitudinal study to verify the hypothesis that the system’s “slow persuasion” yields more durable retention of healthy relationship behaviors compared to the baseline’s ephemeral validation. Second, $N = 40$ was insufficient to detect significant differences in heterogeneous “Love Brain” symptoms. A larger sample size is needed to validate the Dual-Entry Routing hypothesis and confirm whether specific symptoms benefit disproportionately from strict gating. Finally, the multi-agent architecture introduced significant latency (4s/turn vs. 1s for Control), creating product friction that impacted the Experimental condition. Future iterations should employ model distillation to com-

Table 2: Values represent the mean change ($\Delta = \text{Post} - \text{Pre}$); negative values indicate symptom reduction. While the Control group showed greater reduction in general depression (PHQ-9), the Experimental architecture achieved stronger effect sizes (r) in domain-specific pathology, specifically Love Addiction (LAI) and Relationship OCD (ROCI).

Clinical Construct	Mean Delta ($\Delta \pm SD$)		Statistical Comparison		
	Experiment ($N = 20$)	Control ($N = 20$)	U	p	Effect Size (r)
<i>Primary "Love Brain" Indicators</i>					
Love Addiction (LAI)	-0.70 ± 1.58	-0.54 ± 1.15	199.5	.99	0.002
Relational OCD (ROCI)	-0.43 ± 1.36	-0.25 ± 1.77	174.5	.49	0.13
Social Media Jealousy (FBJ)	-0.42 ± 1.18	-0.45 ± 1.28	181.5	.62	0.09
Affective Dependency (ADS)	-0.49 ± 1.15	-0.48 ± 1.07	191.0	.82	0.05
<i>General Distress Covariates</i>					
Depression (PHQ-9)	-1.33 ± 2.45	-2.83 ± 2.87	142.5	.22	-0.18
Anxiety (GAD-7)	-2.00 ± 2.65	-2.25 ± 2.89	186.5	.73	0.06

Note: U and p calculated via Mann-Whitney U test (one-tailed for Exp < Ctrl). Bold indicates the superior mean.

517 press the Orchestrator policy into a smaller, faster model to
518 decouple architectural safety from system lag.

519 7 Conclusion

520 This paper addresses the challenge of deploying Large Lan-
521 guage Models in a sensitive emotional context. By decou-
522 pling state estimation from policy execution, we demon-
523 strated that it is possible to enforce safety guardrails and psy-
524 chological grounding without sacrificing generative flexibil-
525 ity. Our findings showed that while unconstrained LLMs (the
526 Control) may achieve higher short-term engagement, they
527 risk reinforcing maladaptive feedback loops. In contrast,
528 the system successfully functioned as a “cognitive brake,”
529 achieved a deeper reduction in daily maladaptive behaviors,
530 specifically social-media monitoring and relationship doubt.
531 This suggests that the future HAI design in a sensitive domain
532 should not only focus on maximizing engagement metrics,
533 but also be capable of refusing to persuade when the user’s
534 state is fragile, shifting the goal to “safety-first” pacing.

535 Ethical Statement

536 This study was approved by the Institutional Review Board
537 (IRB) of [Anonymized Institution]. All participants provided
538 informed consent regarding the nature of the AI interaction.
539 This module preemptively screened for self-harm and Inti-
540 mate Partner Violence. LLMs were utilized to polish the
541 grammatical fluency of this manuscript; the authors retain full
542 responsibility for all scientific claims and accuracy.

543 8 Appendix

544 8.1 Cause-Strategy Knowledge Base

545 References

546 [Abramowitz, 2006] Jonathan S Abramowitz. The Psycho-
547 logical Treatment of Obsessive—Compulsive Disorder.
548 *The Canadian Journal of Psychiatry*, 2006.

549 [Aktürk *et al.*, 2025] Zekeriya Aktürk, Alexander
550 Hapfelmeier, Alexey Fomenko, Daniel Dümmler,
551 Stefanie Eck, Michaela Olm, Jan Gehrmann, Victoria

Von Schrottenberg, Rahel Rehder, Sarah Dawson, Bernd
Löwe, Gerta Rücker, Antonius Schneider, and Klaus
Linde. Generalized Anxiety Disorder 7-item (GAD-7)
and 2-item (GAD-2) scales for detecting anxiety disorders
in adults. *Cochrane Database of Systematic Reviews*,
2025(3), March 2025.

[Alshiekh *et al.*, 2018] Mohammed Alshiekh, Roderick
Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. Safe Reinforcement Learning
via Shielding. *Proceedings of the AAAI Conference on
Artificial Intelligence*, 32(1), April 2018.

[Arnaiz-Rodriguez *et al.*, 2025] Adrian Arnaiz-Rodriguez,
Miguel Baidal, Erik Derner, Jenn Layton Annable, Mark
Ball, Mark Ince, Elvira Perez Vallejos, and Nuria Oliver.
Between Help and Harm: An Evaluation of Mental
Health Crisis Handling by LLMs, December 2025.
arXiv:2509.24857 [cs].

[Bai *et al.*, 2022] Yuntao Bai, Saurav Kadavath, Sandipan
Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christopher
Olah, Danny Hernandez, Dawn Drain, Deep Ganguli,
Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr,
Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal
Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sell-
itto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam
Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk,
Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton,
Tom Conerly, Tom Henighan, Tristan Hume, Samuel R.
Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared
Kaplan. Constitutional AI: Harmlessness from AI Feed-
back, December 2022. arXiv:2212.08073 [cs].

[Bartels and Zeki, 2004] Andreas Bartels and Semir Zeki.
The neural correlates of maternal and romantic love. *Neu-
roImage*, 21(3):1155–1166, March 2004.

[Basar *et al.*, 2024] Erkan Basar, Iris Hendrickx, Emiel
Krahmer, Gert-Jan Bruijn, and Tibor Bosse. To What

Table 3: **Cause-Strategy Knowledge Base.** This table details the 8 causal clusters, mapping specific user phenotypes to clinical theories and the corresponding evidence-based intervention strategies used by the Orchestrator.

Cluster	Diagnostic Indicators (User State)	Etiological Basis (Theory)	Intervention Strategy (Micro-Action)
Anxious Attachment	ECR-R (anxiety & avoidance subscales) [Fraley <i>et al.</i> , 2000]	Attachment system hyperactivation (anxious attachment) intensifies emotion and drives proximity-seeking behaviors under threat [Mikulincer <i>et al.</i> , 2003]	Behavior Change Technique (BCT) for NFC (targets: reassurance-seeking frequency & specificity): Goal setting (behaviour) (1.1), Action planning / If-Then (1.4), Prompts/cues (7.1), Self-monitoring of behaviour (2.3), Behavior substitution (8.2), Framing/reframing (13.2) and/or Re-attribution (4.3), Commitment (1.9). BCT for NFA (targets: arousal reduction before sending & execution of one request): Reduce negative emotions (11.2), Verbal persuasion about capability (15.1), Behavioral practice/rehearsal (8.1), Action planning (1.4) [Michie <i>et al.</i> , 2013].
Avoidant Attachment	ECR-R (avoidance subscale) [Fraley <i>et al.</i> , 2000]	Attachment system deactivation under threat reduces distress short-term via emotional suppression and self-reliance [Pietromonaco <i>et al.</i> , 2013; Mikulincer <i>et al.</i> , 2003]	BCT for NFC (targets: minimal disclosure enactment & timeboxed check-in adherence): Action planning / If-Then (1.4), Prompts/cues (7.1), Behavioral practice/rehearsal (8.1), Self-monitoring of behaviour (2.3). BCT for NFA (targets: reduce overwhelm to enable minimal expression): Reduce negative emotions (11.2), Verbal persuasion about capability (15.1) (<i>only if used</i>), Commitment (1.9). <i>(Avoid coding "Behavioral contract" unless you truly create a written, witnessed contract; otherwise keep as Commitment.)</i> [Michie <i>et al.</i> , 2013].
Relationship Obsessive-Compulsive Disorder (ROCD)	Relationship Obsessive-Compulsive Inventory (ROCI) in dimensions of love for the partner, Relationship rightness, and being loved by the partner [Doron <i>et al.</i> , 2012]	ROCD conceptual models emphasize intrusive doubts and compulsive behaviors (monitoring, comparisons, reassurance seeking), with intolerance of uncertainty as a key maintaining belief [Doron <i>et al.</i> , 2016]	NFC BCT (targets: compulsive reassurance/checking loop): Goal setting (behaviour) (1.1), Action planning / If-Then (1.4), Self-monitoring of behaviour (2.3), Framing/reframing (13.2) and/or Re-attribution (4.3), Reduce negative emotions (11.2) (<i>for pre-action stabilization</i>). NFA BCT (targets: tolerate uncertainty window without checking): Action planning (1.4), Behavioral practice/rehearsal (8.1), Commitment (1.9), Reduce negative emotions (11.2). Response-prevention rationale: exposure/emotional-processing framework [Foa and Kozak, 1986; Michie <i>et al.</i> , 2013].
Social-media jealousy and monitoring	The Online Jealousy Scale [Sullivan and Bruchmann, 2025]	SNS exposure provides ambiguous cues that fuel jealous cognitions and surveillance behaviors, contributing to dissatisfaction [Muise <i>et al.</i> , 2009; Sullivan, 2021]	NFC BCT (targets: reduce cue exposure & test alternatives): Avoidance/reducing exposure to cues (12.3), Prompts/cues (7.1), Self-monitoring of behaviour (2.3), Behavioral experiments (4.4), Framing/reframing (13.2). NFA BCT (targets: de-escalation before acting): Reduce negative emotions (11.2), Framing/reframing (13.2), Commitment (1.9) [Michie <i>et al.</i> , 2013].
Limerence	Love Addiction Inventory (LAI) [Costa <i>et al.</i> , 2021]; Affective Dependence Scale (ADS-9: Submission/Craving) [Sirvent-Ruiz <i>et al.</i> , 2022]	Intense idealization of other individuals, with behaviors such as repeatedly checking for clues, intrusive thinking, and seeking uncertain rewards through reciprocity. [Ferster and Skinner, 1997; Bradbury <i>et al.</i> , 2025]	NFC BCT (targets: replace contact behavior + track streak): Behavior substitution (8.2), Prompts/cues (7.1), Self-monitoring of behavior (2.3), Commitment (1.9), Avoidance/reducing exposure to cues (12.3). NFA BCT (targets: soothe + reinforce no-contact): Reduce negative emotions (11.2), Self-reward (10.9), Social support (emotional) (3.3) [Michie <i>et al.</i> , 2013].
Mindreading Misbelief	Relationship Beliefs Inventory (RBI: "mindreading expected", "disagreement destructive", etc.) [Bradbury and Fincham, 1993]	Dysfunctional relationship beliefs bias the interpretation of conflict/communication and sustain maladaptive expectations [Eidelson, 1982]	NFC BCT: Behavioral practice/rehearsal (8.1), Action planning (1.4), Self-monitoring of behaviour (2.3), Re-attribution (4.3). NFA BCT: Reduce negative emotions (11.2), Framing/reframing (13.2), Commitment (1.9), Behavioral practice/rehearsal (8.1). Scriptable assertive requests: DBT interpersonal effectiveness (e.g., DEAR MAN) [Michie <i>et al.</i> , 2013].
Boundary deficits ("sacrifice = love")	Silencing the Self Scale (STSS, "care as self-sacrifice" subscale) [Jack and Dill, 1992]; ADS-9 Submission [Sirvent-Ruiz <i>et al.</i> , 2022]	Self-silencing schemas describe suppressing needs or feelings to maintain intimacy and safety; linked to relational dysfunction and distress [Jack and Dill, 1992]	NFC BCT: Action planning (1.4), Behavioral practice/rehearsal (8.1), Self-monitoring of behaviour (2.3), Commitment (1.9), Problem solving (1.2) (<i>barriers to boundary-setting</i>). NFA BCT: Reduce negative emotions (11.2), Framing/reframing (13.2), Self-reward (10.9), Commitment (1.9) [Michie <i>et al.</i> , 2013].
Global dysfunctional relationship beliefs	RBI [Bradbury and Fincham, 1993]	Fatalistic beliefs distort normal conflict into threat and reduce constructive repair behaviors [Eidelson, 1982]	NFC BCT: Information about health consequences (5.1) (<i>only if you frame consequences explicitly</i>), Framing/reframing (13.2), Re-attribution (4.3), Action planning (1.4), Self-monitoring of behaviour (2.3), Commitment (1.9). NFA BCT: Reduce negative emotions (11.2), Self-talk (15.4) (<i>if used</i>), Verbal persuasion about capability (15.1) (<i>if used</i>), Behavioral practice/rehearsal (8.1), Commitment (1.9) [Michie <i>et al.</i> , 2013].

591 Extent Are Large Language Models Capable of Generating
 592 Substantial Reflections for Motivational Interviewing
 593 Counseling Chatbots? A Human Evaluation. In *Proceedings of the 1st Human-Centered Large Language Modeling*
 594 *Workshop*, pages 41–52, TBD, 2024. ACL. 647

595

596 [Beck and Beck, 2021] Judith S. Beck and Aaron T. Beck. 648
Cognitive behavior therapy: basics and beyond. The Guil- 649
 ford Press, New York London, third edition edition, 2021. 650

597

598 [Bradbury and Fincham, 1993] Thomas N. Bradbury and 651
 Frank D. Fincham. Assessing dysfunctional cognition in 652
 marriage: A reconsideration of the Relationship Belief 653
 Inventory. *Psychological Assessment*, 5(1):92–101, March 654
 1993. 655

599

600 [Bradbury *et al.*, 2025] P. Bradbury, E. Short, and P. Bleak- 656
 ley. Limerence, hidden obsession, fixation, and rumination: 657
 A scoping review of human behaviour. *Journal of 658
 Police and Criminal Psychology*, 40:417–426, 2025. 659

601

602 [Brailas and Tsolakis, 2025] Alexios Brailas and Lazaros 660
 Tsolakis. Questions People Ask ChatGPT Regarding 661
 Their Romantic Relationships and What They Think 662
 About the Provided Answers: An Exploratory Study. In 663
 Asbjørn Følstad, Symeon Papadopoulos, Theo Araujo, 664
 Effie L.-C. Law, Ewa Luger, Sebastian Hobert, and 665
 Petter Bae Brandtzaeg, editors, *Chatbots and Human- 666
 Centered AI*, volume 15545, pages 150–158. Springer Na- 667
 ture Switzerland, Cham, 2025. Series Title: Lecture Notes 668
 in Computer Science. 669

603

604 [Brown *et al.*, 2023] Andrew Brown, Ash Tanuj Kumar, Os- 670
 natt Melamed, Intihsan Ahmed, Yu Hao Wang, Arnaud 671
 Deza, Marc Morcos, Leon Zhu, Marta Maslej, Nadia 672
 Minian, Vidya Sujaya, Jodi Wolff, Olivia Doggett, 673
 Mathew Iantorno, Matt Ratto, Peter Selby, and Jonathan 674
 Rose. A Motivational Interviewing Chatbot With 675
 Generative Reflections for Increasing Readiness to Quit 676
 Smoking: Iterative Development Study. *JMIR Mental Health*, 677
 10:e49132, October 2023. 678

605

606 [Bucher *et al.*, 2025] Andreas Bucher, Sarah Egger, Inna 679
 Vashkite, Wenyuan Wu, and Gerhard Schwabe. “It’s Not 680
 Only Attention We Need”: Systematic Review of Large 681
 Language Models in Mental Health Care. *JMIR Mental 682
 Health*, 12:e78410, November 2025. 683

607

608 [Chan *et al.*, 2024] Alan Chan, Carson Ezell, Max Kauf- 684
 man, Kevin Wei, Lewis Hammond, Herbie Bradley, 685
 Emma Bluemke, Nitarshan Rajkumar, David Krueger, 686
 Noam Kolt, Lennart Heim, and Markus Anderljung. 687
 Visibility into AI Agents. In *The 2024 ACM Conference on 688
 Fairness, Accountability, and Transparency*, pages 958– 689
 973, Rio de Janeiro Brazil, June 2024. ACM. 690

609

610 [Costa *et al.*, 2021] S. Costa, N. Barberis, M.D. Griffiths, 691
 et al. The love addiction inventory: Preliminary findings 692
 of the development process and psychometric characteris- 693
 tics. *International Journal of Mental Health and Addic- 694
 tion*, 19:651–668, 2021. 695

611

612 [Dahlgren Lindström *et al.*, 2025] Adam Dahlgren Lind- 696
 ström, Leila Methnani, Lea Krause, Petter Eric- 697
 son, Íñigo Martínez De Rituerto De Troya, Dimitri 698

613 Coelho Mollo, and Roel Dobbe. Helpful, harmless, 699
 honest? Sociotechnical limits of AI alignment and safety 700
 through Reinforcement Learning from Human Feedback 701
Ethics and Information Technology, 27(2):28, June 2025. 702

614

615 [Deng *et al.*, 2023] Yang Deng, Wenqiang Lei, Wai Lam, 703
 and Tat-Seng Chua. A Survey on Proactive Dialogue Sys- 704
 tems: Problems, Methods, and Prospects. In *Proceed- 705
 ings of the Thirty-Second International Joint Conference 706
 on Artificial Intelligence*, pages 6583–6591, Macau, SAR 707
 China, August 2023. International Joint Conferences on 708
 Artificial Intelligence Organization. 709

616

617 [Dong *et al.*, 2024a] Yi Dong, Ronghui Mu, Gaojie Jin, 710
 Yi Qi, Jinwei Hu, Xingyu Zhao, Jie Meng, Wenjie Ruan, 711
 and Xiaowei Huang. Building Guardrails for Large Lan- 712
 guage Models, May 2024. arXiv:2402.01822 [cs]. 713

618

619 [Dong *et al.*, 2024b] Yi Dong, Ronghui Mu, Yanghao 714
 Zhang, Siqi Sun, Tianle Zhang, Changshun Wu, Gaojie 715
 Jin, Yi Qi, Jinwei Hu, Jie Meng, Saddek Bensalem, and 716
 Xiaowei Huang. Safeguarding Large Language Models: 717
 A Survey, June 2024. arXiv:2406.02622 [cs]. 718

620

621 [Doron *et al.*, 2012] Guy Doron, Danny S. Derby, Ohad 719
 Szepsenwol, and Dahlia Talmor. Tainted love: Ex- 720
 ploring relationship-centered obsessive compulsive symp- 721
 toms in two non-clinical cohorts. *Journal of Obsessive- 722
 Compulsive and Related Disorders*, 1(1):16–24, January 723
 2012. 724

622

623 [Doron *et al.*, 2016] Guy Doron, Danny Derby, Ohad 725
 Szepsenwol, Elad Nahaloni, and Richard Moulding. Re- 726
 lationship Obsessive–Compulsive Disorder: Interference, 727
 Symptoms, and Maladaptive Beliefs. *Frontiers in Psychi- 728
 atry*, 7, April 2016. 729

624

625 [Eidelson, 1982] Roy J Eidelson. Cognition and Relation- 730
 ship Maladjustment: Development of a Measure of Dys- 731
 functional Relationship Beliefs. 50(5), 1982. 732

626

627 [Ferster and Skinner, 1997] C B Ferster and B F Skinner. 733
 Schedules of Reinforcement. 1997. 734

628

629 [Foa and Kozak, 1986] Edna B Foa and Michael J Kozak. 735
 Emotional Processing of Fear: Exposure to Corrective In- 736
 formation. 1986. 737

630

631 [Fraley *et al.*, 2000] R. Chris Fraley, Niels G. Waller, and 738
 Kelly A. Brennan. An item response theory analysis of 739
 self-report measures of adult attachment. *Journal of Per- 740
 sonality and Social Psychology*, 78(2):350–365, February 741
 2000. 742

632

633 [Freitas *et al.*, 2025] Julian De Freitas, Zeliha Oğuz- 743
 Uğuralp, and Ahmet Kaan-Uğuralp. Emotional Manipu- 744
 lation by AI Companions. 2025. 745

634

635 [Furumai *et al.*, 2024a] K. Furumai, R. Legaspi, J. Vizcarra, 746
 Y. Yamazaki, Y. Nishimura, S. J. Semnani, K. Ikeda, 747
 W. Shi, and M. S. Lam. Zero-shot persuasive chatbots with 748
 llm-generated strategies and information retrieval. *arXiv 749
 preprint arXiv:2407.03585*, 2024. 750

636

637 [Furumai *et al.*, 2024b] Kazuaki Furumai, Roberto Legaspi, 751
 Julio Cesar Vizcarra Romero, Yudai Yamazaki, Yasutaka 752
 Nishimura, Sina Semnani, Kazushi Ikeda, Weiyang Shi, 753

638

639

640

641

642

643

644

645

646

702 and Monica Lam. Zero-shot Persuasive Chatbots with 758
 703 LLM-Generated Strategies and Information Retrieval. In 759
 704 *Findings of the Association for Computational Linguistics: 760*
EMNLP 2024, pages 11224–11249, Miami, Florida, USA, 761
 705 2024. Association for Computational Linguistics. 762
 706

707 [Gollwitzer and Sheeran, 2006] Peter M. Gollwitzer and 763
 708 Paschal Sheeran. Implementation Intentions and Goal 764
 709 Achievement: A Meta-analysis of Effects and Processes. 765
 710 In *Advances in Experimental Social Psychology*, volume 766
 711 38, pages 69–119. Elsevier, 2006. 767

712 [Grupp-Phelan *et al.*, 2024] Jacqueline Grupp-Phelan, 768
 713 Adam Horwitz, David Brent, Lauren Chernick, Rohit 769
 714 Shenoi, Charlie Casper, Michael Webb, and Cheryl King. 770
 715 Management of suicidal risk in the emergency department: 771
 716 A clinical pathway using the computerized adaptive 772
 717 screen for suicidal youth. *JACEP Open*, 5(2):e13132, 773
 718 April 2024.

719 [Harris, 2009] Russ Harris. *ACT with love: stop struggling, 774
 720 reconcile differences, and strengthen your relationship 775
 721 with acceptance and commitment therapy*. New Harbinger 776
 722 Publications, Oakland, CA, 2009. OCLC: 777565441.

723 [Hayes *et al.*, 2006] Stephen C Hayes, Jason B Luoma, 777
 724 Frank W Bond, Akihiko Masuda, and Jason Lillis. 778
 725 Acceptance and Commitment Therapy: Model, processes and 779
 726 outcomes. 2006.

727 [He *et al.*, 2023] Yuhao He, Li Yang, Chunlian Qian, Tong 780
 728 Li, Zhengyuan Su, Qiang Zhang, and Xiangqing Hou. 781
 729 Conversational Agent Interventions for Mental Health 782
 730 Problems: Systematic Review and Meta-analysis of 783
 731 Randomized Controlled Trials. *Journal of Medical Internet 784
 732 Research*, 25:e43862, April 2023.

733 [Heinz *et al.*, 2025] Michael V. Heinz, Daniel M. Mackin, 785
 734 Brianna M. Trudeau, Sukanya Bhattacharya, Yinzhou 786
 735 Wang, Haley A. Banta, Abi D. Jewett, Abigail J. 787
 736 Salzhauer, Tess Z. Griffin, and Nicholas C. Jacobson. 788
 737 Randomized Trial of a Generative AI Chatbot for Mental 789
 738 Health Treatment. *NEJM AI*, 2(4), March 2025.

739 [Hofmann *et al.*, 2012] Stefan G. Hofmann, Anu Asnaani, 790
 740 Imke J. J. Vonk, Alice T. Sawyer, and Angela Fang. 791
 741 The Efficacy of Cognitive Behavioral Therapy: A 792
 742 Review of Meta-analyses. *Cognitive Therapy and Research*, 793
 743 36(5):427–440, October 2012.

744 [Hou *et al.*, 2024] Haonan Hou, Kevin Leach, and 794
 745 Yu Huang. ChatGPT Giving Relationship Advice – 795
 746 How Reliable Is It? *Proceedings of the International 796
 747 AAAI Conference on Web and Social Media*, 18:610–623, 797
 748 May 2024.

749 [Hua *et al.*, 2025] Yining Hua, Steve Siddals, Zilin Ma, Isaac 798
 750 Galatzer-Levy, Winna Xia, Christine Hau, Hongbin Na, 799
 751 Matthew Flathers, Jake Linardon, Cyrus Ayubcha, and 800
 752 John Torous. Charting the evolution of artificial intelligence 801
 753 mental health chatbots from rule-based systems to 802
 754 large language models: a systematic review. *World Psychiatry*, 803
 755 24(3):383–394, October 2025.

756 [Jack and Dill, 1992] Dana Crowley Jack and Diana Dill. 804
 757 The Silencing the Self Scale: Schemas of Intimacy Asso- 805
 758 ciated With Depression in Women. *Psychology of Women 806
 759 Quarterly*, 16(1):97–106, March 1992.

760 [Kroenke *et al.*, 2001] Kurt Kroenke, Robert L. Spitzer, and 807
 761 Janet B. W. Williams. The PHQ-9: Validity of a brief 808
 762 depression severity measure. *Journal of General Internal 809
 763 Medicine*, 16(9):606–613, September 2001.

764 [Liu *et al.*, 2025] Minqian Liu, Zhiyang Xu, Xinyi Zhang, 810
 765 Heajun An, Sarvech Qadir, Qi Zhang, Pamela J Wis- 811
 766 niewski, Jin-Hee Cho, Sang Won Lee, Ruoxi Jia, and Lifu 812
 767 Huang. LLM Can be a Dangerous Persuader: Empirical 813
 768 Study of Persuasion Safety in Large Language Models. 814
 769 2025.

770 [Martell *et al.*, 2013] Christopher R. Martell, Ruth Herman- 815
 771 Dunn, and Sona Dimidjian. *Behavioral Activation for 816
 772 Depression: A Clinician’s Guide*. 2013.

773 [Michie *et al.*, 2013] Susan Michie, Michelle Richardson, 817
 774 Marie Johnston, Charles Abraham, Jill Francis, Wendy 818
 775 Hardeman, Martin P. Eccles, James Cane, and Caroline E. 819
 776 Wood. The Behavior Change Technique Taxonomy (v1) 820
 777 of 93 Hierarchically Clustered Techniques: Building an 821
 778 International Consensus for the Reporting of Behavior 822
 779 Change Interventions. *Annals of Behavioral Medicine*, 823
 780 46(1):81–95, August 2013.

781 [Mikulincer and Shaver, 2007] Mario Mikulincer and 824
 782 Phillip Robert Shaver. *Attachment in adulthood: struc- 825
 783 ture, dynamics and change*. The Guilford press, New York 826
 784 (N.Y.), 2007.

785 [Mikulincer *et al.*, 2003] Mario Mikulincer, Phillip R 827
 786 Shaver, and Dana Pereg. Attachment Theory and Affect 828
 787 Regulation: The Dynamics, Development, and Cognitive 829
 788 Consequences of Attachment-Related Strategies. 2003.

789 [Moore *et al.*, 2025] Jared Moore, Declan Grabb, William 830
 790 Agnew, Kevin Klyman, Stevie Chancellor, Desmond C. 831
 791 Ong, and Nick Haber. Expressing stigma and inappropriate 832
 792 responses prevents LLMs from safely replacing mental 833
 793 health providers. In *Proceedings of the 2025 ACM Confer- 834
 794 ence on Fairness, Accountability, and Transparency*, pages 835
 795 599–627, Athens Greece, June 2025. ACM.

796 [Muise *et al.*, 2009] Amy Muise, Emily Christofides, and 836
 797 Serge Desmarais. More Information than You Ever 837
 798 Wanted: Does Facebook Bring Out the Green-Eyed 838
 799 Monster of Jealousy? *CyberPsychology & Behavior*, 840
 800 12(4):441–444, August 2009.

801 [Park *et al.*, 2019] SoHyun Park, Jeewon Choi, Sungwoo 841
 802 Lee, Changhoon Oh, Changdai Kim, Soohyun La, Joon- 842
 803 hwan Lee, and Bongwon Suh. Designing a Chatbot for 843
 804 a Brief Motivational Interview on Stress Management: 844
 805 Qualitative Case Study. *Journal of Medical Internet 845
 806 Research*, 21(4):e12231, April 2019.

807 [Pietromonaco *et al.*, 2013] Paula R. Pietromonaco, Bert 846
 808 Uchino, and Christine Dunkel Schetter. Close relationship 847
 809 processes and health: Implications of attachment theory 848
 810 for health and disease. *Health Psychology*, 32(5):499–513, 849
 811 May 2013.

812 [Pombal *et al.*, 2025] José Pombal, Maya D’Eon, Nuno M. 866
 813 Guerreiro, Pedro Henrique Martins, António Farinhas, and 867
 814 Ricardo Rei. MindEval: Benchmarking Language 868
 815 Models on Multi-turn Mental Health Support, December 2025. 869
 816 arXiv:2511.18491 [cs]. 870
 817 [Priya *et al.*, 2023] Priyanshu Priya, Kshitij Mishra, Palak 871
 818 Totala, and Asif Ekbal. PARTNER: A Persuasive Mental 872
 819 Health and Legal Counselling Dialogue System for Women 873
 820 and Children Crime Victims. In *Proceedings of the Thirty-Second 874
 821 International Joint Conference on Artificial Intelligence*, pages 6183–6191, Macau, SAR China, 875
 822 August 2023. International Joint Conferences on Artificial 876
 823 Intelligence Organization. 877
 824 [Salvi *et al.*, 2025] F. Salvi, M. Horta Ribeiro, R. Gallotti, 878
 825 and R. West. On the conversational persuasiveness of gpt- 879
 826 4. *Nature Human Behaviour*, 2025. 880
 827 [Scholich *et al.*, 2025] Till Scholich, Maya Barr, Shannon 881
 828 Wiltsey Stirman, and Shriti Raj. A Comparison of Responses 882
 829 from Human Therapists and Large Language Model-Based 883
 830 Chatbots to Assess Therapeutic Communication: Mixed 884
 831 Methods Study. *JMIR Mental Health*, 12:e69709, May 2025. 885
 832 [Shaikh *et al.*, 2020] Omar Shaikh, Jiaao Chen, Jon Saad- 886
 833 Falcon, Polo Chau, and Diyi Yang. Examining the Ordering 887
 834 of Rhetorical Strategies in Persuasive Requests. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 1299–1306, Online, 2020. Association 888
 835 for Computational Linguistics. 889
 840 [Sirvent-Ruiz *et al.*, 2022] Carlos Miguel Sirvent-Ruiz, 890
 841 María De La Villa Moral-Jiménez, Juan Herrero, María 891
 842 Miranda-Rovés, and Francisco J Rodríguez Díaz. Concept 892
 843 of Affective Dependence and Validation of an Affective 893
 844 Dependence Scale. *Psychology Research and Behavior 894
 845 Management*, Volume 15:3875–3888, December 2022. 895
 846 [Sullivan and Bruchmann, 2025] Kieran T. Sullivan and 896
 847 Kathryn Bruchmann. The Online Jealousy Scale: an 897
 848 adaptation, extension, and psychometric analysis of the 898
 849 Facebook Jealousy Scale. *Frontiers in Human Dynamics*, 899
 850 6:1447003, January 2025. 900
 851 [Sullivan, 2021] Kieran T. Sullivan. Attachment Style and 901
 852 Jealousy in the Digital Age: Do Attitudes About Online 902
 853 Communication Matter? *Frontiers in Psychology*, 903
 854 12:678542, July 2021. 904
 855 [Wang *et al.*, 2019] Xuewei Wang, Weiyang Shi, Richard 905
 856 Kim, Yoojung Oh, Sijia Yang, Jingwen Zhang, and Zhou 906
 857 Yu. Persuasion for Good: Towards a Personalized Persuasive 907
 858 Dialogue System for Social Good. In *Proceedings of the 908
 859 57th Annual Meeting of the Association for Computational 909
 860 Linguistics*, pages 5635–5649, Florence, Italy, 2019. 910
 861 Association for Computational Linguistics. 911
 862 [Wang, 2024] Wei Wang. Development and Research on the 912
 863 Quality Scale of “Hopeless Romantic” Characteristics for 913
 864 College Students. *Advances in Psychology*, 14(11):612– 914
 865 620, 2024. 915